

13th bbe Webinar

New Fluorometer Uses the Parameter 'Unbound Phycocyanin' as an Early Warning System for Cyanobacterial T&O Compounds and Cyanotoxins

biological - biophysical - engineering

moldaenke

bbe

13th Webinar Welcome

Ylva Tischler Christian Moldaenke

bbe Team

biological - biophysical - engineering

Federal Ministry of Education and Research

Use of a selected parameter to minimize taste and odor problems and cyanotoxins in drinking water production

Monitoring targets:

Cyanobacterial taste & odor compounds (e.g. 2-MIB, Geosmin) and cyanotoxins indirectly by fluorescence patterns

Goal:

Assumption:

If phycocyanin leaves the cell, other compounds such as cyanotoxins and T&O compounds also leave the cell.

Method:

The pattern of fluorescence is investigated. The cyanobacteria pigment *phycocyanin* (PC) serves as an indicator for the release. We can discriminate between:

- PC, which has probably left the cell (free PC)
- PC, which is still bound to the photosystem

Spectral Groups of Phytoplankton

Algae pigments and their relation to taxomical algae classes

Page 6

Unbound PC: The Fluorescence Spectra are Different

Unbound PC prefers to fluoresce at 650nm instead of at 700nm

The Toxin Release During Treatment is Recognized

€PA

United States Environmental Protection Agency Office of Water Mail Code 4304T EPA-810F11001 September 2014

Cyanobacteria and Cyanotoxins: Information for Drinking Water Systems

Intracellular Cyanotoxins Removal (Intact Cells)

Pre-treatment oxidation	Oxidation often lyses cyanobacteria cells releasing the cyanotoxin to the
	water column. If oxidation is required to meet other treatment objectives,
	consider using lower doses of an oxidant less likely to lyse cells
	(potassium permanganate). If oxidation at higher doses must be used,
	sufficiently high doses should be used to not only lyse cells but also
	destroy total toxins present (see extracellular cyanotoxin removal).

The Treatment of Cyanobacteria in Water Works

Pre-treatment affects cyanobacteria in water works (Li, Lei, 2013). The oxidation attacks the membrane structure and can lead to an increase of MIB/GSM/Toxins, for example, if the oxidant is consumed before the cell lysed.

Cyanobacteria Treated by Ultrasound

The graph shows the lysis of the cells and the development of unbound phycocyanin that can also partially pass a 0,45µm filter

Cyanobacteria treated with varying ultrasound power shows parallels of increasing free PC and microcystin concentrations. The overall microcystin content is stable over the recorded time span

Effect of the pre-oxidation chemical

Application of 4mg/I KMnO₄ on a solution containing 50 μg/I chlorophyll (*Microcystis*). Cell lysis allows the detection of unbound PC and extracellular microcystins

German Water Work (Altena, next to Dortmund) Suffering from Planktothrix rub.

*) = Data taken after pre-oxidation, Toxins found in the filtered samples

Page 14

The Release and Decay of Cyanobacterial Components

Possible Process Optimization in Drinking Water Works

FluoSens

Why online ?

The efficiency of pre-oxidation chemicals depends on many factors, such as:-

- Algae density
- Algae age, health
- Competing organic compounds, such as humic substances
- Wind direction, which alters the algae concentration
- Temperature, pH,...etc.

The above conditions can change in minutes to hours

SUMMARY

- Most toxic T & O compounds stem from cyanobacteria. Cyanobacterial blooms are known to carry such compounds. The registration of lysing cells is helpful for management decisions in regard of health and economy.
- The analysis of the lysis of the cyanobacteria cells via unbound phycocyanin serves as a good early warning and control parameter for drinking water works.
- Unbound phycocyanin reflects the status of cyanobacteria and also describes clearly raw water quality.

biological - biophysical - engineering

moldaenke

Thank you