

Why do we need turbidity correction in algae class determination?

Content

- Transmission detection as a tool in algae determination
- Influence of turbidity on algae class differentiation
- Disproportionate effects on fingerprints
- Method for compensating the influence of turbidity on algae class determination
- Implemetation into bbe++

Transmission

- Transmission lower than 75% has an measurable influence on the algae class differentiation
- There is a possibility of correcting that influence
- The transmission detection can be used for compensation
- It is not possible to correct the fitted result the raw data has to be corrected

Disproportion

- Turbidity has different in fluences on the excitation light:
 - longer wavelengths are reflected into the sensor
 - → 570nm, 590nm, 610nm give higher results
 - absorbtion effects influence the shorter wavelength
 - → 370nm, 470nm and 525nm
- The result is a disproportion in the measured fingerprint
 - → cyanobacteria appears due to a higher 590/610nm signal
 - → detection of fewer green algae due to signal loss at 470nm

Disproportion

Method

- Clay (dried and powdered) as turbidity agent
 - In comparison to formazin not only reflection also absorbtion
 - In comparison to bentonite better equilibrium between absorbtion and reflection; more stable suspension
 - Good reproducability simply weigh the dried clay powder
 - Did not harm the used algae (Chlorella vulgaris, Cyclotella meneghiniana and Microcystis aeroguinosa)

Result of Compensation

Polynome 2^{nd} degree $\rightarrow ax^2+bx+c$

The End

Thank you for your attention